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The perfectly matched layer (PML) has become a standard for comparison in the
techniques that have been developed to close the system of Maxwell equations (more
generally, wave equations) when simulating an open system. The original Berenger
PML formulation relies on a split version of Maxwell equations, with numerical elec-
tric and magnetic conductivities. We present here an extension of this formulation,
which introduces counterparts of the electric and magnetic conductivities affecting
the term which is spatially differentiated in the equations. The phase velocity along
each direction is also multiplied by an additional coefficient. We show that under
certain constraints on the additional numerical coefficients, this “medium” does not
generate any reflection at any angle or any frequency and is thus a perfectly matched
layer. Technically it is a superset of Berenger’s PML to which it reduces for a specific
set of parameters, and like it, it is anisotropic. However, unlike the PML, it introduces
some asymmetry in the absorption rate and is therefore labeled an APML, for asym-
metric perfectly matched layer. We present here the numerical considerations that
have led us to introduce such a medium as well as its theory. Several finite-difference
numerical implementations are derived (in one, two, and three dimensions) and the
performance of the APML is contrasted with that of the PML in one and two di-
mensions. Using plane wave analysis, we show that our APML implementations
lead to higher absorption rates than the considered PML implementations. Although
we have considered in this paper the finite-difference discretization of Maxwell-like
equations only, the APML system of equations may be used with other discretiza-
tion schemes, such as finite elements, and may be applied to other equations, for
applications beyond electromagnetics. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Often, part or all of a simulated region is modeled as if extended to infinity and an open
boundary condition must be applied to close the system. In many cases, the open boundary
condition consists of absorbing everything that comes out of the simulated region with, ide-
ally, no reflection and is thus called an absorbing boundary condition. For the wave equation,
most ABCs can be grouped into two categories: “one-way” ABCs that factorize the wave
equation and extract an operator that permits only outgoing waves (higher order schemes
can be derived by using products of one-way operators), or ABCs that use an absorbing
layer which damps the outgoing waves. High-order algorithms using the absorbing layer
technique were first obtained by Berenger using a split formulation of the wave equation,
known as PML, for perfectly matched layer [2]. A lot of work has since been published
concerning the PML technique and the reader can refer to [1, 3, 6, 7, 9, 13], to cite a few.
Good reviews of ABCs are given in [6–8].

In [10], we presented a formulation of a centered finite-differenced form of the wave
equation which can be tuned to describe either a one-way operator or a PML layer. Moreover,
we presented a new ABC using this formulation, which presents characteristics of both one-
way and PML ABCs. We have shown that the hybridization was beneficial. In this article,
we generalize this approach and present a new kind of PML which is asymmetric and
is thus labeled APML for asymmetric perfectly matched layer. By construction, it is a
superset of Berenger’s PML, to which it reduces for a specific choice of free parameters.
Ignoring discretization errors the APML, like the PML, does not generate any reflection
at any frequency or any angle following a specific prescription of parameters. Unlike the
PML, it generally damps the wave asymmetrically. This asymmetrization is due to an
additional numerical term relative to the Berenger split-field formulation. This term is
formally symmetric to the damping term of the PML but acts on the quantity which is
differentiated in space rather than the one that acts in time. As noted in [11], this term appears
naturally when recovering the infinitesimal limit of a centered finite-differenced formulation
of the wave equation, which can be established using a minimal set of geometrical and
operational requirements. An additional parameter, which is fixed in the PML formulation
but free in the APML one, is the wave speed for each direction of propagation.

At the infinitesimal limit, the coefficient of reflection of an APML layer is the same
as that of a PML layer, assuming a scaling of the conductivities, and is independent of
the third free parameter which has been introduced into the equations. At this point, the
introduction of the additional parameters seems pointless for the absorption of outgoing
waves. However, the finite-difference implementation of the APML does not behave as its
infinitesimal counterpart does. We present several possible implementations of the APML
in finite difference (including the one presented in [10]) and analyze their response to the
excitation of a plane wave at an incoming angle by means of a coefficient of reflection,
depending on the frequency and angle of the incident wave. The results are contrasted with
a classic implementation of the PML as given in [2] and an implementation of the PML of our
own that we presented in [10]. They show that for plane waves, our APML implementations
provide higher absorption rates than the considered PML implementations.

1.1. Notations

In this article, we will consider quantities discretized on orthogonal and regular space–
time grids. On such a grid, a quantity A will be denoted Ai

j , Ai
jk , or Ai

jkl for, respectively,
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a one-, two-, or three-dimensional system, where i is the time index and j, k, and l are the
space indices along x, y, and z. Note that a location defined half way between j and j + 1
will be noted j + 1/2. On such a grid, we define the operators of centered finite difference
�u and finite average �u

�t A = Ai+1/2
j,k,l − Ai−1/2

j,k,l

�t
, (1)

�x A = Ai
j+1/2,k,l − Ai

j−1/2,k,l

�t
, (2)

�t A = Ai+1/2
j,k,l + Ai−1/2

j,k,l

2
, (3)

�x A = Ai
j+1/2,k,l + Ai

j−1/2,k,l

2
, (4)

where u = (x, y, or z), �t is the time step, and �u is the mesh size along u.

1.2. General Considerations on Explicit Discrete
Representation of the Wave Equation

We give some general considerations on explicit calculation of the wave equation on
a discrete space–time grid that led us to the introduction of the APML medium (these
considerations were given in [11]).

For simplicity, we restrict this part to the study of a one-dimensional wave equation in
vacuum of the form

∂2 E

∂t2
= c2 ∂2 E

∂x2
, (5)

which is equivalent to the system

∂ E

∂t
= c

∂ B

∂x
, (6)

∂ B

∂t
= c

∂ E

∂x
. (7)

We consider solving this system in a discrete space and use the Yee discretization scheme
[12] where E and B are staggered in space as well as in time (see Fig. 1). If we assume
that the discrete solution is explicit (i.e., the evaluation of a quantity at a given time step
involves only quantities known at previous time steps) and is linear, we then have

Ei+1
j = �1 Ei

j + �11 Bi+1/2
j+1/2 − �12 Bi+1/2

j−1/2 . . . + �1n Bi+1/2
j+n/2 . . .

+�2 Ei−1
j + �21 Bi−1/2

j+1/2 − �22 Bi−1/2
j−1/2 . . . + �2n Bi−1/2

j+n/2 . . .

. . . . . . . . . . . . . . . . . .

+�m Ei−m+1
j + �m1 Bi−m+3/2

j+1/2 − �m2 Bi−m+3/2
j−1/2 . . . + �mn Bi−m+3/2

j+n/2 . . .

. . . . . . . . . . . . . . . . . . ,

(8)

where �m and �mn are constants.
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FIG. 1. Diagram showing the positions of E and B on the discrete space–time grid. E and B are both staggered
in space and time.

If we add the constraint that the equation should be minimal and symmetric, then the
most compact possibility is given by

Ei+1
j = �Ei

j + �p Bi+1/2
j+1/2 − �m Bi+1/2

j−1/2, (9)

where �, �p, and �m are three constants. For the modeling of (5), we present two ways to
determine these constants.

One way is to consider a wave ei(�t−kx) and use it in (9),

ei��t/2 = �e−i��t/2 ± �pe−ik�x/2 ∓ �meik�x/2, (10)

where ± and ∓ discriminate the cases of waves propagating forward or backward.
We then make a long-wavelength approximation and assume that ��t � 1 and k�x � 1,

so that we can expand and truncate the exponentials, giving

1 + i��t/2 = �(1 − i��t/2) ± �p(1 − ik�x/2) ∓ �m(1 + ik�x/2).

Requiring � and k to be real (propagation in vacuum) and � = kc, we can separate the
real and imaginary parts, yielding a system of four equations that, once solved, gives

� = 1 and �p = �m = c�t/�x .

Another way relies on the fact that (9) can be rewritten

Ei+1
j − Ei

j

�t
+ �E

Ei+1
j + Ei

j

2
= cE

Bi+1/2
j+1/2 − Bi+1/2

j−1/2

�x
+ �B

Bi+1/2
j+1/2 + Bi+1/2

j−1/2

2
, (11)
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with 


�E = 2
�t

1 −�
1 +�

,

cE = �x
�t

�p + �m

1 +�
,

�B = 2
�t

�p − �m

1 +�
.

(12)

At the infinitesimal limit, (11) becomes

∂ E

∂t
+ �E E = cE

∂ B

∂x
+ �B B, (13)

which will describe a wave equation in vacuum only if �E = �B = 0 and cE = c, giving
� = 1 and �p = �m = c�t/�x .

The term �E has a physical meaning, but that is not the case for �B , which may appear
as an undesirable term. It turns out that, as we have shown in [10, 11], this term plays a
role in the discretized form of (5). For example, the Sommerfeld outgoing-wave boundary
condition is given by (for waves propagating forward)

Ei+1
j =

(
1 − 2c�t

c�t + �x

)
Ei

j − 2c�t

c�t + �x
Bi+1/2

j−1/2, (14)

which can be rewritten as

Ei+1
j − Ei

j

�t
+ 2c

�x

Ei+1
j + Ei

j

2
= c

Bi+1/2
j+1/2 − Bi+1/2

j−1/2

�x
− 2c

�x

Bi+1/2
j+1/2 + Bi+1/2

j−1/2

2
(15)

and which has the same form as (11).

2. THEORY OF THE ASYMMETRIC PERFECTLY MATCHED LAYER

In order to understand the implications of the additional coefficient �B in (13), we have
introduced it as an additional term in a split form of Maxwell equations, following Berenger’s
presentation of the PML medium [2]. As the analysis will reveal, the resulting medium has
properties similar to a PML medium (to which it reduces for a choice of parameters),
although it introduces some asymmetry in the coefficient of absorption.

2.1. Definition of the APML Medium

For the TE case, we define the APML as

ε0
∂ Ex

∂t
+ �y Ex = cy

c

∂ Hz

∂y
+ �̄y Hz, (16)

ε0
∂ Ey

∂t
+ �x Ey = −cx

c

∂ Hz

∂x
+ �̄x Hz, (17)

�0
∂ Hzx

∂t
+ �∗

x Hzx = −c∗
x

c

∂ Ey

∂x
+ �̄∗

x Ey, (18)

�0
∂ Hzy

∂t
+ �∗

y Hzy = c∗
y

c

∂ Ex

∂y
+ �̄∗

y Ex , (19)

Hz = Hzx + Hzy . (20)
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For cx = cy = c∗
x = c∗

y = c and �̄x = �̄y = �̄∗
x = �̄∗

y = 0, this system reduces to the
Berenger PML medium, while the additional constraint �x = �y = �∗

x = �∗
y = 0 leads to

the system of Maxwell equations in vacuum.

2.2. Propagation of a Plane Wave in an APML Medium

We consider a plane wave of magnitude (E0, Hzx0, Hzy0) and pulsation � propagating in
the APML medium with an angle � relative to the x axis; i.e.,

Ex = −E0 sin �ei�(t−�x−�y), (21)

Ey = E0 cos �ei�(t−�x−�y), (22)

Hzx = Hzx0ei�(t−�x−�y), (23)

Hzy = Hzy0ei�(t−�x−�y), (24)

where � and � are two complex constants to be determined.
Introducing (21)–(24) into (16)–(19) gives

ε0 E0 sin � − i
�y

�
E0 sin � = �

cy

c
(Hzx0 + Hzy0) + i

�̄y

�
(Hzx0 + Hzy0), (25)

ε0 E0 cos � − i
�x

�
E0 cos � = �

cx

c
(Hzx0 + Hzy0) − i

�̄x

�
(Hzx0 + Hzy0), (26)

�0 Hzx0 − i
�∗

x

�
Hzx0 = �

c∗
x

c
E0 cos � − i

�̄∗
x

�
E0 cos �, (27)

�0 Hzy0 − i
�∗

y

�
Hzy0 = �

c∗
y

c
E0 sin � + i

�̄∗
y

�
E0 sin �. (28)

Defining Z = E0/(Hzx0 + Hzy0) and using (25) and (26), we get

� =
[

Z

(
ε0 − i

�y

�

)
sin � − i

�̄y

�

]
c

cy
, (29)

� =
[

Z

(
ε0 − i

�x

�

)
cos � + i

�̄x

�

]
c

cx
. (30)

Adding Hzx0 and Hzy0 from (27) and (28) and substituting the expressions for � and �

from (29) and (30) yields

1

Z
= Z

(
ε0 − i �x

�

)
cos �

c∗
x

cx
+ i �̄x

�
c∗

x
cx

− i �̄∗
x

�

�0 − i �∗
x

�

cos �

+
Z
(
ε0 − i �y

�

)
sin �

c∗
y

cy
− i �̄y

�

c∗
y

cy
+ i

�̄∗
y

�

�0 − i
�∗

y

�

sin �. (31)

If cx = c∗
x , cy = c∗

y , �̄x = �̄∗
x , �̄y = �̄∗

y , �x
ε0

= �∗
x

�0
, and �y

ε0
= �∗

y

�0
, then

Z = ±
√

�0

ε0
, (32)
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which is the impedance of vacuum. Hence, like the PML, given some restrictions on the
parameters, the APML does not generate any reflection at any angle or any frequency. As
for the PML, this property is not retained after discretization, as shown subsequently in this
paper.

Calling 	 any component of the field and 	0 its magnitude, we get from (21), (29), (30),
and (32) that

	 = 	0ei�(t∓x cos �/cx ∓y sin �/cy )e−
(
± �x cos �

ε0cx
+�̄x

c
cx

)
x e−

(
± �y sin �

ε0cy
+�̄y

c
cy

)
y
. (33)

We assume that we have an APML layer of thickness � (measured along x) and that
�y = �̄y = 0 and cy = c. Using (33), we determine that the coefficient of reflection given by
this layer is

RAPML(
) = e−(�x cos �/ε0cx +�̄x c/cx )�e−(�x cos �/ε0cx −�̄x c/cx )�

= e−2(�x cos �/ε0cx )�, (34)

which happens to be the same as the PML theoretical coefficient of reflection if we assume
cx = c. Hence, it follows that for the purpose of wave absorption, the term �̄x seems to be
of no interest. However, although this conclusion is true at the infinitesimal limit, it does
not hold for the discretized counterpart.

3. DISCRETIZATION OF THE APML

In this section, we derive several possible finite-difference discretizations of (16) to (19)
in one dimension, followed by the extension to higher dimension. The reader who is not
interested in the details of these derivations may jump to the next section and find a concise
list of the proposed discretized schemes in Appendix B.

3.1. In One Dimension

Equations (16)–(19) all have the form of a one-dimensional equation,

∂ F

∂t
+ �u F = cu

∂G

∂u
+ �̄uG. (35)

3.1.1. Exponential Time and Space Stepping

A possible implementation consists of applying the exponential time-stepping method
[6] to time and space. The discretization of

∂ F

∂t
+ �u F (36)

using the exponential time-stepping method is given by

�u
Fi+1

j − e−�u�t Fi
j

1 − e−�u�t
. (37)
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Similarly, we can apply the method in space rather than in time and the discretization of
cu

∂G
∂u + �̄uG is then given by

�̄u

cu

Gi+1/2
j+1/2 − e−�̄u�u/cu Gi+1/2

j−1/2

1 − e−�̄u�u/cu
. (38)

Merging the two expressions gives

Fi+1
j = e−�u�t Fi

j + �̄u

�u

1 − e−�u�t

1 − e−�̄u�u/cu

(
Gi+1/2

j+1/2 − e−�̄u�u/cu Gi+1/2
j−1/2

)
, (39)

which is of the form

Fi+1
j = �Fi

j + �pGi+1/2
j+1/2 − �m Gi+1/2

j−1/2, (40)

with

� = e−�u�t , (41)

�p = �̄u

�u

1 − e−�u�t

1 − e−�̄u�u/cu
, (42)

�m = e−�̄u�u/cu �p. (43)

In the form of (11), (40) becomes

Fi+1/2
j − Fi−1/2

j

�t
+ �d

u

Fi+1/2
j + Fi−1/2

j

2
= cd

u

Gi
j+1/2 − Gi

j−1/2

�u
+ �̄d

u

Gi
j+1/2 + Gi

j−1/2

2
,

(44)

where 


�d
u = 2

�t
1 − e−�u�t

1 + e−�u�t ,

cd
u = �u

�t
�̄u
�u

1 − e−�u�t

1 − e−�̄u�u/cu
1 + e−�̄u�u/cu

1 + e−�u�t ,

�̄d
u = 2

�t
�̄u
�u

1 − e−�u�t

1 + e−�u�t .

(45)

For consistency, we can verify that at the infinitesimal limit, �d
u → �u , cd

u → cu , and
�̄d

u → �̄u . This implementation will be labeled APML–exponential.

3.1.2. Direct Assignment of Coefficients

We present here a different implementation. Instead of directly deriving a discrete ap-
proximation of the infinitesimal equation being modeled, we pose the form of the algorithm
and assign the coefficients so that the resulting algorithm matches properties of the equation
it is modeling.

Following the considerations of Section 1.2, we propose that the form be

Fi+1/2
j = �Fi−1/2

j + �pGi
j+1/2 − �m Gi

j−1/2. (46)

We saw in Section 2.2 that in an APML medium, a wave experiences a modification of
its amplitude as it propagates and that the amplitude of the modification is dependent on
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the direction of propagation. Let us define t+
j and t−

j as the coefficients of transmission
at location j for waves propagating, respectively, forward and backward. Hence, a wave
propagating forward having amplitude A at location j − 1/2 will have the amplitude At+j
at location j and At+j t+

j+1/2 at location j + 1/2, while a wave propagating backward having
amplitude A at location j + 1/2 will have the amplitude At−

j at location j and At−
j t−

j−1/2

at location j − 1/2.
We consider now a forward-propagative wave of the form ei(�t−kx), with amplitude A at

location j − 1/2. At location j , we have from (46)

At+j ei��t/2 = �At+j e−i��t/2 − �pAt+j t+
j+1/2e−ik+

j+1/2�x/2 + �m Aeik+
j−1/2�x/2

, (47)

while consideration of a wave propagating backward gives

At−j ei��t/2 = �At−j e−i��t/2 + �pAe−ik−
j+1/2�x/2 − �mAt−j t−

j−1/2eik−
j−1/2�x/2

. (48)

Steady-state approximation. Assuming a steady-state approximation, the exponentials
become unity and we get

� = 1 + �pt+
j+1/2 − �m/t+

j (49)

for waves traveling forward and

� = 1 + �mt−
j−1/2 − �p/t−

j (50)

for waves traveling backward.
Using, from (12),

cd
u = �u

�t

�p + �m

1 + �
(51)

and setting cd
u = cu , we can solve (49)–(51) to get �, �p, and �m ; i.e.,

� = −1 + �u
cu�t (tp + tm + tptm(tpp + tmm)) + tptmmtpptm

1 + �u
cu�t (tp + tm + tptm(tpp + tmm)) − tptmmtpptm

, (52)

�p = 2tm(1 + tmmtp)

1 + �u
cu�t (tp + tm + tptm(tpp + tmm)) − tptmmtpptm

, (53)

�m = 2tp(1 + tpptm)

1 + �u
cu�t (tp + tm + tptm(tpp + tmm)) − tptmmtpptm

, (54)

where we have used the notation

tp ≡ t+
j , (55)

tm ≡ t−
j , (56)

tpp ≡ t+
j+1/2, (57)

tmm ≡ t−
j−1/2 (58)

for better readability.
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Note that we also have

�d
u = 2cu

�u

1 − tptmmtpptm
(tp + tm + tptm(tpp + tmm))

, (59)

cd
u = cu, (60)

�̄d
u = 2cu

�u

tm − tp + tptm(tmm − tpp)

(tp + tm + tptm(tpp + tmm))
. (61)

This implementation will be labeled APML–SSA for APML–steady-state approximation.

Long-wavelength approximation. Let us now make a long-wavelength approximation
of (47) and (48). We assume that ��t � 1 and k�x � 1 so that we can expand and truncate
the exponentials and get

t+
j (1 + i��t/2) = �t+

j (1 − i��t/2) − �pt+
j t+

j+1/2

(
1 − ik+

j+1/2�x
/

2
)

+ �m
(
1 + ik+

j−1/2�x
/

2
)

(62)

for waves propagating forward and

t−
j (1 + i��t/2) = �t−

j (1 − i��t/2) + �p
(
1 − ik−

j+1/2�x
/

2
)

− �mt−
j t−

j−1/2

(
1 + ik−

j−1/2�x
/

2
)

(63)

for waves propagating backward. We also impose the speed of waves to match the speed of
the APML layer; that is, k+

j = k−
j = k j = �c j for any j .

Since the coefficients of transmission take care of amplitude modifications, � and k are
real, and separating the real and the imaginary parts of the two preceding equations, we get

� = 1 + �pt+
j+1/2 − �m/t+

j , (64)

� = −1 + � j+1/2�pt+
j+1/2 + � j−1/2�m

/
t+

j , (65)

� = 1 + �mt−
j−1/2 − �p/t−

j , (66)

� = −1 + � j−1/2�mt−
j−1/2 + � j+1/2�p

/
t−

j , (67)

where � j+1/2 = �x
c j + 1/2�t and � j−1/2 = �x

c j − 1/2�t .
We have obtained four independent equations linking �, �p, and �m . We need to discard

one if we do not want to impose any restrictions on the values of t+
j , t−

j , t+
j+1/2, and t−

j−1/2.
We want to retain (64) and (66) because they represent the lowest order of approximation.
Assuming that we consider an APML layer for absorbing waves propagating forward, we
are more interested in verifying the next order of approximation for waves propagating
forward and will then keep (65) and disregard (67).

Then, we solve (64)–(66) to obtain

� = −1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p + 1)

1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p − 1)
, (68)

�p = 2tm(1 + tmmtp)

1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p − 1)
, (69)
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�m = 2tp(1 + tpptm)

1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p − 1)
, (70)

where we have, as in the previous subsection, the same notation shortcut using tp, tm , tpp,
tmm as well as

�m ≡ � j−1/2,

�p ≡ � j+1/2.

For completeness, we note that we also have

�d
u = 2

�t

1 − tptmmtpptm
�m + tmtpp[�m + �p(1 + tptmm)]

, (71)

cd
u = �u

�t

tm + tp + tptm(tmm + tpp)

�m + tmtpp[�m + �p(1 + tptmm)]
, (72)

�̄d
u = 2

�t

tm − tp + tptm(tmm − tpp)

�m + tmtpp[�m + �p(1 + tptmm)]
. (73)

We now define �a
u, j = ∫ j

− j−1/2 �u du/
∫ j

− j−1/2 du and �̄a
u, j = ∫ j

− j−1/2 �̄u du/
∫ j

− j−1/2 du.
It follows that

tp = e−
(

�a
u, j + �̄a

u, j

)
�u

/
2
, (74)

tmm = e−
(

�a
u, j − �̄a

u, j

)
�u

/
2
, (75)

tpp = e−
(

�a
u, j+1/2 + �̄a

u, j+1/2

)
�u

/
2
, (76)

tm = e−
(

�a
u, j+1/2 − �̄a

u, j+1/2

)
�u

/
2
, (77)

so that

tptmm = e−�a
u, j�u

, (78)

tpptm = e−�a
u, j+1/2�u

. (79)

Rewriting (47) and (48) in terms of tp, tm , tpp, and tmm gives

ei��t/2 = �e−i��t/2 − �ptppe−ik+
p �x/2 + �m Aeik+

m �x/2
/

tp, (80)

ei��t/2 = �e−i��t/2 + �pe−ik−
p �x/2

/
tm − �mtmmeik−

m �x/2. (81)

By substituting (68), (69), (70), (78), and (79) into (80) and (81), we remark that (80) and
(81) are independent of �̄a

u . As the numerical results will show, this property seems to hold in
practical implementation. The wave reflected by an APML layer under this implementation
seems to be independent of �̄a

u , although the coefficients �, �p, and �m are different, which
is quite a remarkable behavior. We note that it then reproduces a property of the APML,
which was demonstrated in Section 2.2.

This implementation will be labeled APML–LWA for APML–long-wavelength approx-
imation.
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3.1.3. Hybrid PML–Sommerfeld

Another possibility relies on assigning the coefficients �, �p, and �m in (46) following
the requirements that the algorithm must converge to:

• the standard Yee scheme (� = 1, �p = �m = c�t/�x) when all the coefficients of trans-
mission equal unity.

• the Sommerfeld outgoing-wave ABC (� = 1 − �m , �p = 0, �m = 2c�t/ (�x + c�t))
when the coefficient of transmission of the next plane is zero.

An infinity of possibilities exist and we will only consider the one that we have presented
in [10], which is given by (for a wave traveling in the forward direction)

� = 1 − c�t

�x

[
1 +

(
�x − c�t

�x + c�t

)(
1 − t+

j+1/2

)] + t+
j+1/2

c�t

�x
, (82)

�p = c�t

�x
, (83)

�m = t+
j

c�t

�x

[
1 +

(
�x − c�t

�x + c�t

)(
1 − t+

j+1/2

)]
. (84)

This implementation will be labeled APML–hybrid.

3.2. Extension to Two Dimensions and Beyond

3.2.1. The Scalar Wave Equation

We introduce the notation

�u = ∂

∂t
− �u, (85)

	u = cu
∂

∂u
+ �̄u, (86)

with (u = x, y, z).
Assuming a three-dimensional scalar wave equation of the form

�x fx = 	x gx , (87)

�y fy = 	y gy, (88)

�z fz = 	zgz, (89)

�x gx = 	x f, (90)

�y gy = 	y f, (91)

�zgz = 	z f, (92)

f = fx + fy + fz, (93)

the centered finite-difference system is simply obtained by replacing the operators �u and
	u with their discrete counterparts:

�u ⇒ �t − �u�t , (94)

	u ⇒ cu�u + �̄u�u . (95)
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Each equation then has the form of (44) and can be written in the form of (46) for direct
computer implementation, the coefficients being determined using one of the prescriptions
described in Section 3.1.

3.2.2. The Vector Three-Dimensional Maxwell Equations

We consider Maxwell equations written in normalized units

∂B
∂t

= −∇ × E,

∂E
∂t

= ∇ × B − J,

(96)
∇ · E = � ,

∇ · B = 0,

which can also be expressed as

∂B
∂t

= −∇ × E,

∂E
∂t

= ∇ × B − J + ∇F,

(97)
∂ F

∂t
= ∇ · E − � ,

∇ · B = 0,

where F ≡ 0 by virtue of the equation of continuity ∂�
∂t + ∇ · J = 0.

We can derive from this a wave equation on the electric field

∂2E
∂t2

− �E = ∂J
∂t

− ∇� . (98)

A possible implementation consists of directly applying the algorithm described in Sec-
tion 3.2.1 for the multidimensional scalar wave equation to each component of the electric
field in (98); i.e.,

�x E ′
xx = 	x ux − Jx , �x ux = 	x Ex − � ,

�y E ′
xy = 	yuy, �yuy = 	y Ex ,

�z E ′
xz = 	zuz, �zuz = 	z Ex ,

Ex = E ′
xx + E ′

xy + E ′
xz,

(99)

�x E ′
yx = 	xvx , �xvx = 	x Ey,

�y E ′
yy = 	yvy − Jy, �yvy = 	y Ey − � ,

�z E ′
yz = 	zvz, �zvz = 	z Ey,

Ey = E ′
yx + E ′

yy + E ′
yz,

(100)

�x E ′
zx = 	xwx , �xwx = 	x Ez,

�y E ′
zy = 	ywy, �ywy = 	y Ez,

�z E ′
zz = 	zwz − Jz, �zwz = 	z Ez − � ,

Ez = E ′
zx + E ′

zy + E ′
zz,

(101)
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with the magnetic field being given by

Bx = vz − wy, (102)

By = wx − uz, (103)

Bz = uy − vx . (104)

For completeness, the derivation of the explicit finite-difference discretization of (99) is
given in Appendix C.

Using the formulation (97), an alternative implementation is given by

�x Exx = 	x F − Jx , �x Fx = 	x Ex − �x ,

�y Exy = 	y Bz, �y Bxy = −	y Ez,

�z Exz = −	z By, �z Bxz = 	z Ey,

Ex = Exx + Exy + Exz, Bx = Bxy + Bxz,

(105)

�x Eyx = −	x Bz, �x Byx = 	x Ez,

�y Eyy = 	y F − Jy, �y Fy = 	y F − �y,

�z Eyz = 	z Bx , �z Byz = −	z Ex ,

Ey = Eyx + Eyy + Eyz, By = Byx + Byz,

(106)

�x Ezx = 	x By, �x Bzx = −	x Ey,

�y Ezy = −	y Bx , �y Bzy = 	y Ex ,

�z Ezz = 	z F − Jz, �z Fz = 	z Ez − �z,

Ez = Ezx + Ezy + Ezz, Bz = Bzx + Bzy,

(107)

�x �x = −	x Jx , (108)

�y�y = −	y Jy, (109)

�z�z = −	z Jz, (110)

� = �x + �y + �z, (111)

F = Fx + Fy + Fz . (112)

A third implementation may consist of using a split form of (98):

�x Exx = −Jx ,

�y Exy = 	y Bz, �y Bxy = −	y Ez,

�z Exz = −	z By, �z Bxz = 	z Ey,

Ex = Exx + Exy + Exz, Bx = Bxy + Bxz,

(113)

�x Eyx = −	x Bz,

�y Eyy = −Jy, �x Byx = 	x Ez,

�z Eyz = 	z Bx , �z Byz = −	z Ex ,

Ey = Eyx + Eyy + Eyz, By = Byx + Byz,

(114)

�x Ezx = 	x By,

�y Ezy = −	y Bx , �x Bzx = −	x Ey,

�z Ezz = −Jz, �y Bzy = 	y Ex ,

Ez = Ezx + Ezy + Ezz, Bz = Bzx + Bzy,

(115)

Several considerations help us choose between these three implementations. Remarking
that
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Bxy = −wy, (116)

Bxz = vz, (117)

Byx = wx , (118)

Byz = −uz, (119)

Bzx = −vx , (120)

Bzy = uy, (121)

Fx = ux , (122)

Fy = vy, (123)

Fz = wz, (124)

it follows that the first and second implementations are equivalent.
Now, if we define the operator �−1

u such that

�−1
u �u f = f, (125)

then, using (105) to (112), we have

�x�y�z F = �x�y�z(Fx + Fy + Fz)

= �y�z(	x Ex − �x ) + �x�z(	y Ey − �y) + �x�y(	z Ez − �z)

= 	x
(
�−1

x �y�z(	x F − Jx ) + 	y�z Bz − 	z�y By
) − �y�z�x

+ 	y
(−	x�z Bz + �−1

y �x�z(	y F − Jy) + 	z�x Bx
) − �y�z�x

+ 	z
(
	x�y By − 	y�x Bx + �−1

z �x�y(	z F − Jz)
) − �y�z�x

= (
	2

x�
−1
x �y�z + 	2

y�
−1
y �x�z + 	2

z�
−1
z �x�y

)
F. (126)

Hence, F depends only on itself and not on any other term and it remains zero if it is
zero at any given time. This demonstration is valid in the discrete space only if the discrete
operators 	 and � retain their properties of associativity and commutativity. It can easily
be shown that this is the case, and it follows that all three implementations are equivalent.
We have verified this result numerically. In practice, the third one is preferred because it is
more efficient.

4. REFLECTION OF A PLANE WAVE STRIKING AN APML

We assume that we solve the system

Fi+1
x, jk = � j Fi

x, jk + �p, j G
i+1/2
x, j+1/2k − �m, j G

i+1/2
x, j−1/2k,

Fi+1
y, jk = Fi+1

y, jk + cy�t

�y

(
Gi+1/2

y, jk+1/2 − Gi+1/2
y, jk−1/2

)
,

Fi+1
jk = Fi+1

x, jk + Fi+1
y, jk, (127)

Gi+1/2
x, j+1/2k = � j+1/2Gi−1/2

x, j+1/2k + �p, j+1/2 Fi
j+1k − �m, j+1/2 Fi

jk,

Gi+1/2
y, j+1/2k = Gi−1/2

y, j+1/2k + cy�t

�y

(
Fi

jk+1 − Fi
jk

)
on a 2-D grid.
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4.1. Analytical Evaluation of the Coefficient of Reflection

We consider a plane wave whose axis of propagation is at angle � from the normal
of the absorbing layer. As schematically shown in Fig. 2, multiple reflections occur in
an APML layer. The calculation of the coefficient of reflection for the entire layer re-
quires knowledge of the coefficients of reflection at each plane of the layer (locations
j, j + 1/2, j + 1, j + 3/2, etc.).

4.1.1. Coefficient of Reflection Given by a Plane Passing through a Row of Nodes

We first evaluate the coefficient of reflection at a row passing through a node (location
of F) inside a slice where the APML scheme is applied. The rest of space is described by
centered finite difference of the wave equation in vacuum. Hence, only the plane where the
APML scheme applies will generate reflections.

Combining equations from the system (127), we deduce that (using the notation u = cu�t
�u

with u = x, y)

Fi+1
jk + Fi

jk

(−2 + 22
y − � + �px + �mx

) + Fi−1
jk

(
1 + 2� − 2�2

y − �px − �mx
)

−�Fi−1
jk + 2

y

[−Fi
jk+1 − Fi

jk−1 + �
(

Fi−1
jk+1 + Fi−1

jk−1

)] − x
[
�p

(
Fi−1

j+1 − Fi
j+1

)
+ �m

(
Fi−1

j−1 − Fi
j−1

)] = 0. (128)

We assume now a plane wave of amplitude ei(�t−kx x−ky y) striking the APML slice at
incidence �(kx = k cos(�), ky = k sin(�)). We assume that the norms of kx and ky are
conserved by the transmitted and the reflected waves and we define the coefficient of

FIG. 2. A plane wave striking an APML layer will generate multiple reflections inside the layer that must be
taken into account in order to calculate the coefficient of reflection.
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reflection as the complex number r . Under these conditions, the transmitted wave is given
by (1 − r )ei(�t−kx x−ky y), while the signal in front of the slice is the sum of the incident wave
and the reflected one, that is, ei(�t−kx x−ky y) + rei(�t+kx x−ky y). Assuming that the slice stands
at j , we have

Fi+1
jk = (1 − r )ei��t , (129)

Fi
jk = 1 − r, (130)

Fi−1
jk = (1 − r )e−i��t , (131)

Fi−2
jk = (1 − r )e−2i��t , (132)

Fi
jk+1 = (1 − r )e−iky�y, (133)

Fi
jk−1 = (1 − r )eiky�y, (134)

Fi−1
jk+1 = (1 − r )ei(−��t−ky�y), (135)

Fi−1
jk−1 = (1 − r )ei(−��t+ky�y), (136)

Fi
j+1k = (1 − r )e−ikx�x , (137)

Fi−1
j+1k = (1 − r )ei(−��t−kx�x), (138)

Fi
j−1k = eikx�x + re−ikx�x , (139)

Fi+1
j−1k = ei(��t+kx�x) + rei(��t−kx�x). (140)

Substituting these into (128), we get

r+
node = a + beikx�x

a + be−ikx�x
, (141)

with

a = ei��t + (−2 + 22
y − � + �px + �mx

) + e−i��t
(
1 + 2� − 2�2

y − �px − �mx
)

−�e−2i��t + 2
y (�e−i��t − 1)(e−iky�y + eiky�y) + x�pe−ikx�x (1 + e−i��t ), (142)

b = x�m(1 − e−i��t ). (143)

The calculation of kx and ky for a given � is detailed in Appendix A.
The coefficient of reflection r−

node for a wave propagating backward along x is given by
the same formula, switching �p and �m .

4.1.2. Coefficient of Reflection Given by a Plane Passing between Two Rows of Nodes

At the locations of Gx , we have

Gi+1/2
x, j+1/2k =�Gi−1/2

x, j+1/2k + �p Fi
j+1k − �m Fi

jk . (144)

Using the same considerations as for calculating the reflection at the node leads us to the
coefficient of reflection at the internode in x ; i.e.,

r+
i = a − beikx�x

a + be−ikx�x
, (145)
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with

a = (
ei��t/2 −�e−i��t/2

)
cos(�) + �pe−ikx�x/2, (146)

b = �m . (147)

Again, the coefficient of reflection r−
i for the wave propagating backward relative to

x is obtained by switching �p and �m . We also note that knowledge of the coefficient of
reflections r+ and r− of one slice also gives us its coefficients of transmission t+ = 1 − r+

and t− = 1 − r−.

4.1.3. Coefficient of Reflection of the Entire APML Layer

We assume that the APML layer lies from j0 to j0 + nL . Knowing the coefficients of
reflection and transmission for both directions of two consecutive slices, say slices at
j0 + nL − 1/2 and j0 + nL , we can calculate the coefficient of reflection R+

j0 − nL − 1/2 due
to the coupling of these two slices (for clarity, we use the notation shortcut for indices:
1 ≡ j0 + nL − 1/2 and 2 ≡ j0 + nL ):

R+
j0+nL−1/2 = r+

1 − t+
1 r+

2 t−
1 e−ikx�x + t+

1 r+
2 t−

1 e−ikx�x (r−
1 r+

2 e−ikx�x )

− t+
1 r+

2 t−
1 e−ikx�x (r−

1 r+
2 e−ikx�x )2 · · ·

= r+
1 − t+

1 r+
2 t−

1 e−ikx�x
∞∑

n=0

(−r−
1 r+

2 e−ikx�x )n

= r+
1 − t+

1 r+
2 t−

1 e−ikx�x

1 + r−
1 r+

2 e−ikx�x
. (148)

We can iterate backward from j = j0 + nL to j = j0 in order to get the coefficient of
reflection of the entire layer, given by R+

j0 , using at each iteration the formula

R+
j = r+

j − t+
j R+

j+1/2t−
j e−ikx�x

1 + r−
j R+

j+1/2e−ikx�x
. (149)

4.2. Evaluation of the Coefficient of Reflections Via Numerical Experiments

4.2.1. In One Dimension

We compute the quantities

Fi+1
j = � j Fi

j +�p, j G
i+1/2
j+1/2 − �m, j G

i+1/2
j−1/2 (150)

Gi+1/2
j+1/2 = � j+1/2Gi−1/2

j+1/2 + �p, j+1/2 Fi
j+1 − �m, j+1/2 Fi

j (151)

on a 1-D grid of length Nx + NAPML. At the left end of the grid, the field is imposed as
F(�, t) = H f (t) sin(�t), where H f (t) is the Harris function

H f (t) =
{

10 − 15 cos(2�ct/L) + 6 cos(4�ct/L) − cos(6�ct/L)
32 , when 0 < t < L/c,

0, otherwise,
(152)
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where L = Nx and c is the speed of waves. For j < Nx , we model propagation in vacuum,
so that we set � = 1 and �p = �m = c�t/�x . For j ≥ Nx , the coefficients are set to model
either a PML or an APML medium. A reference solution is concurrently calculated on a
2Nx grid simulating propagation in vacuum only:

Fi+1
ref, j = Fi

ref, j + c�t

�x

(
Gi+1/2

ref, j+1/2 − Gi+1/2
ref, j−1/2

)
, (153)

Gi+1/2
ref, j+1/2 = Gi−1/2

ref, j+1/2 + c�t

�x

(
Fi

ref, j+1 − Fi
ref, j

)
. (154)

The time step is set to �t = 0.5�x/c and the run is stopped when the time t reaches
t = 2Nx�x/c (note that we use �t = 0.5�x/c for convenience and because it is below the
Courant limit up to dimension 3, so that the results are valid in 1-D, 2-D, and 3-D). The
coefficient of reflection is then computed as

R(�) =
√∑

j≤Nx
[(F − Fref)2 + (G − Gref)2]∑

j>Nx

[
F2

ref + G2
ref

] . (155)

4.2.2. In Two Dimensions

We consider the quantities

Fi+1
x, jk = � j Fi

x, jk + �p, j G
i+1/2
x, j+1/2k − �m, j G

i+1/2
x, j−1/2k, (156)

Fi+1
y, jk = Fi

y, jk + c�t

�y

(
Gi+1/2

y, jk+1/2 − Gi+1/2
y, jk−1/2

)
, (157)

Fi+1
jk = Fi+1

x, jl + Fi+1
y, jl , (158)

Gi+1/2
x, j+1/2k = � j+1/2Gi−1/2

x, j+1/2k + �p, j+1/2 Fi
x, j+1k − �m, j+1/2 Fi

x, jk, (159)

Gi+1/2
y, jk + 1/2 = Gi−1/2

y, jk + 1/2 + c�t

�y

(
Fi

y, jk+1 − Fi
y, jk

)
. (160)

on two 2-D grids (see Fig. 3). The first, which we label “main grid,” is composed of a large
vacuum region bounded along x by two APML regions (at the lower end, a large region to
simulate vacuum; at the upper end, the APML layer to be tested). A second grid, labeled
“secondary grid,” is composed of a small vacuum area followed by a large APML region.
Periodic boundary conditions are applied in the y dimension on both grids. Both grids have
the same mesh size �x and �y in each dimension and the same length L y = Ny�y in y.

We fix �x = 1, �y = 1, �t = 0.5, �, and �. Using (157), �y = 1, �t = 0.5, �, �, and the
result given in Appendix A, we evaluate the discrete ky . From this, we can compute the
wavelength along y: �y = 2�/ky . Because we want �y = L y = Ny�y , we take Ny to be
the integer part of �y/�y and recompute �y = Ny�y and ky = 2�/�y . From this, we re-
compute � as

� = arcsin

∣∣∣∣c�t

�y

e−0.5iky�y − e0.5iky�y

e0.5i��t − e−0.5i��t

∣∣∣∣. (161)

We then evaluate kx using the method of Appendix A. At the lower end in x of the
secondary grid, the field is imposed as
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FIG. 3. Diagram of the “main grid” and “secondary grid” used for the measurement of the coefficient of
reflection in two dimensions.

Fi
s,k =

{
10 − 15 cos(2�ct/L) + 6 cos(4�ct/L) − cos(6�ct/L)

32 sin(�t − ky y), if 0 < t < 0.5L/c,

sin(�t − ky y), otherwise ,
(162)

with y = k�y and t = i�t .
We label the quantities computed on the secondary grid sec F and secG. At the lower end

of the secondary grid, we impose

sec Fi
0k = Fi

s,k (163)

and calculate the following secG on the grid in x :

secGi+1/2
1/2k = secGi−1/2

1/2k + c�t

�x

(sec
Fi

1k − sec Fi
0k

)
. (164)

The same field is also launched into the main grid in the vacuum region at location js ,
close to the APML region to be tested,

Gi+1/2
x, js + 1/2k = Gi+1/2

x, js + 1/2k + c�t

�x

(
Fi

x, js + 1k − Fi
x, js k − Fi

s,k

)
, (165)

and we remove the contribution of the launched wave on E at js ,

Fi+1
x, js k = Fi

x, js k + c�t

�x

(
Gi+1/2

x, js + 1/2k − secGi+1/2
x,1/2k − Gi+1/2

x, js − 1/2k

)
, (166)

so that the incident wave does not affect the part at j < js on the main grid. Hence, only the
reflected wave is present in this region, where it is measured at the lower end of the vacuum
region.
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FIG. 4. Coefficient of reflection of the APML–exponential as a function of wavelength for various values
of p.

4.3. Results

We compare the results we obtain using the APML technique with two implementations
of the PML. The first one is the original implementation given by Berenger [2] (labeled
“PML”) while the second is one of our own [10], where we applied a steady-state analysis
in order to constrain the coefficients (labeled “PML-� adjusted”).

FIG. 5. Coefficient of reflection of the APML–SSA as a function of wavelength for various values of p.
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FIG. 6. Coefficient of reflection of the APML–LWA as a function of wavelength for various values of p.

In all the calculations, we have used

�j = �m

(
j�x

�

)n

1 ≤ j ≤ Nl , (167)

with �m = 4/�x , � = 5�x , and n = 2. The number of mesh points along x in the layer was

FIG. 7. Comparison of APML and PML coefficient of reflection as a function of wavelength in 1-D.
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FIG. 8. Coefficient of reflection of the PML as a function of the angle of incidence.

Nl = 10. We also define the constant p such that �̄j = p�j . We have also set c j = c for any
j . Given these prescriptions, a summary of the algorithms used is given in Appendix B.

For a given angular frequency �, the results are given as a function of the vacum wave-
length � = 2�c/� (where c is the speed of wave in vacuum at the infinitesimal limit) and
the mesh size �x , or the period � = 2�/�.

FIG. 9. Coefficient of reflection of the PML–sigma adjusted as a function of the angle of incidence.
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FIG. 10. Coefficient of reflection of the APML–exponential (p = −1) as a function of the angle of incidence.

4.3.1. In One Dimension

The analytical coefficients of reflection for the implementations APML–exponential,
APML–SSA, and APML–LWA are displayed for several values of p in Figs. 4–6, respec-
tively. We remark that the best result is always obtained for p = −1. We also notice that
the implementation APML–LWA has the property of producing a coefficient of reflection
that is independent of the value of p or, in other words, independent of �̄. We recall that

FIG. 11. Coefficient of reflection of the APML–exponential (p = 1) as a function of the angle of incidence.
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FIG. 12. Coefficient of reflection of the APML–hybrid as a function of the angle of incidence.

this is a property of the APML at the infinitesimal limit (see Section 2.2). Finally, we note
that the APML–SSA implementation is equivalent to the APML–LWA implementation for
p = −1.

In Fig. 7, we have plotted for comparison the coefficients of reflection given by the PML,
PML-� adjusted, APML–exponential (p = −1), APML–hybrid, and APML–LWA. Both the
analytical result and the results from the numerical experiment described in Section 4.2.1
are displayed. We remark first (as noted in [10]) that our implementation of the PML (the

FIG. 13. Coefficient of reflection of the APML–SSA (p = −1) as a function of the angle of incidence.
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FIG. 14. Coefficient of reflection of the APML–SSA (p = 1) as a function of the angle of incidence.

PML-� adjusted) performs significantly better than the standard PML implementation. We
remark also that all three APML implementations perform better than the standard PML,
with the APML–hybrid and the APML–LWA implementations performing the best.

4.3.2. In Two Dimensions

We display in Figs. 8–15 the coefficients of reflection for the different implementations
of the PML and the APML as a function of the angle between the incident wave axis of

FIG. 15. Coefficient of reflection of the APML–LWA (p = −1 · · · + 1) as a function of the angle of incidence.
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FIG. 16. Comparison coefficient of reflection of PML and APML as a function of the angle of incidence for
� = 2�/� � 20 �x/c.

propagation and the normal of the absorbing layer. As in the 1-D case, we remark that the
results obtained for the APML–LWA are independent of p and that APML–SSA(p = −1)
gives the same result as APML–LWA. The sharp “spikes” that are present in most of the
figures are attributed to destructive interference inside the absorbing layer. A comparison
of the different PML and APML is also given in Fig. 16 for � = 2�/� � 20�x/c. Results
from both analytical and numerical experiments are presented for a wide range of angles
and they match very well. Here again, we conclude that the PML–LWA implementation
performs the best for the plane wave analysis that we have considered.

5. CONCLUSION

From general considerations on explicit calculations of the wave equation in the discrete
space, we have deduced a simple form of the equation that has led us to introduce additional
terms. The analysis of the new equation shows that it describes an asymmetric perfectly
matched layer medium (thus labeled APML). The analysis of the new medium has shown
that the absorption efficiency is equivalent to that of a PML at the infinitesimal limit.
However, in the discrete space, several implementations were derived and the results have
shown a significant improvement over a standard PML, both in one and two dimensions,
when analysing the response of the considered PML and APML implementations to a
monochromatic plane wave.

6. FURTHER CONSIDERATIONS

In real calculations, the structure of waves impinging on the absorbing layer are more
complicated than the monochromatic plane wave considered here, and further studies are
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needed in order to fully compare the efficiency of APML with that of other techniques.
Because different applications will involve different wave structures, the result may well
be application dependent.

Also, some exploration of the properties and capabilities of the APML system has been
left for future work. For example, in an APML medium, the velocity of waves can vary
spatially. We note that various authors have already considered a progressive slowdown
of the wave into sponge layers in order to prevent reflection [4, 5]. Additional studies
are needed to determine how the spatial variations of this velocity should be tailored and
combined with the modulation of wave amplitude, as is possible with an APML, to improve
the absorption efficiency of the layer at the discrete level.

Although the motivation for the introduction of the APML came from the analysis of
a finite-difference formulation of the wave equation, and only a finite-difference imple-
mentation of the APML has been considered in this paper, there is nothing fundamental
linking the APML formulation, as given in Section 2.1, to the finite-difference technique.
Hence, different discretizations of the APML, such as schemes based on finite-element or
finite-volume methods, are possible and may provide algorithms with interesting properties
and performance.

Finally, like the original PML [2], the APML derivation that has been presented in this
paper involves a splitting of field components and is thus only weakly well posed [1, 9].
Although, as mentioned in [9], instabilities due to the weakly well-posed property of the
split-field formulation are not observable in most practical cases, an unsplit strongly well-
posed formulation of the APML would be of interest (unsplit formulations of the PML can
be found in [3, 7, 9, 13]). As for the PML, such a formulation may permit the derivation of
APML medium formulations for a variety of equations, broadening its range of application
beyond electromagnetics to such fields as acoustics, quantum mechanics, and others.

APPENDIX A: EVALUATION OF THE DISCRETE WAVE NUMBER

Given the equation

Fi+1
j =�Fi

j + �pGi+1/2
j+1/2 − �m Gi+1/2

j−1/2 (168)

supporting the propagation of a wave ei(�t−kx), we have

ei��t/2 =�e−i��t/2 + �pe−ik�x/2 − �meik�x/2 (169)

for a wave propagating in the forward direction. We suppose that � is known and that we
want to know the corresponding value of k. Multiplying the last equation by e−ik�x/2, we
obtain a second-order equation on e−ik�x/2,

�p
(
e−ik�x/2

)2 + (
ei��t/2 −�e−i��t/2

)
e−ik�x/2 − �m = 0, (170)

which we can solve to get

k = −2 ln

[−b + √
b2 − 4ac

2a

]
, (171)
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with

a = �p,

b = (
ei��t/2 −�e−i��t/2

)
, (172)

c = −�m .

The solution for waves traveling backward is obtained by interchanging �p and �m . In
2-D, we have

Fi+1
x, jk = �x Fi

x, jk + �x,pGi+1/2
x, j+1/2k − �x,m Gi+1/2

x j−1/2k, (173)

Fi+1
y, jk = �y Fi

y, jk + �y,pGi+1/2
y, jk + 1/2 − �y,m Gi+1/2

y jk − 1/2. (174)

Assuming kx = k cos � and ky = k sin �, we get

ei��t/2 cos � = �x e−i��t/2 cos � + �x,pe−ikx�x/2 − �x,meikx�x/2, (175)

ei��t/2 sin � = �ye−i��t/2 sin � + �y,pe−iky�y/2 − �y,meiky�y/2, (176)

so that

kx = −2 ln

[−bx + √
b2

x − 4ax cx

2ax

]
, (177)

with

ax = �x,p,

bx = (
ei��t/2 −�e−i��t/2

)
cos �, (178)

cx = −�x,m,

and

ky = −2 ln

[−by +
√

b2
y − 4aycy

2ay

]
, (179)

with

ay = �y,p,

by = (
ei��t/2 −�e−i��t/2

)
sin �, (180)

cy = −�y,m .

APPENDIX B: SUMMARY OF PML AND APML ALGORITHMS

We assume �j given at each location j :

Fi+1
x, jk = � j Fi

x, jk + �p, j G
i+1/2
x, j+1/2k − �m, j G

i+1/2
x, j−1/2k, (181)

Fi+1
y, jk = Fi

y, jk + c�t

�y

(
Gi+1/2

y, jk+1/2 − Gi+1/2
y, jk−1/2

)
, (182)

Fi+1
jk = Fi+1

x, jk + Fi+1
y, jk, (183)
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Gi+1/2
x, j+1/2k = � j+1/2Gi−1/2

x, j+1/2k + �p, j+1/2 Fi
j+1k − �m, j+1/2 Fi

jk, (184)

Gi+1/2
y, jk+1/2 = Gi−1/2

y, jk+1/2 + c�t

�y

(
Fi

jk+1 − Fi
jk

)
. (185)

B.1. PML

� j = e−�j�t , (186)

�p, j = 1 − e−�j�t

�j�x/c
, (187)

�m, j = �p, j . (188)

B.2. PML-� Adjusted

� j = e−�∗
j �t

, (189)

�p, j = 1 − e−�∗
j �t

�∗
j �x/c

, (190)

�m, j = �p, j , (191)

with

t j = e−�j�x/2 (192)

and

�∗
j = t j+1/2 − 1/t j

�x
. (193)

B.3. APML–Exponential

� j = e−�j�t , (194)

�p, j = �̄j

�j

1 − e−�j�t

1 − e−�̄j�x/c
, (195)

�m, j = e−�̄j�x/c�p, j , (196)

with �̄j = p�j .

B.4. APML–Hybrid

� j = 1 − c�t

�x

[
1 +

(
�x − c�t

�x + c�t

)(
1 − t j+1/2

)]+ c�t

�x
t j+1/2, (197)

�p, j = c�t

�x
, (198)

�m, j = c�t

�x

[
1 +

(
�x − c�t

�x + c�t

)(
1 − t j+1/2

)]
t j , (199)

with

t j = e−�j�x/2. (200)
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B.5. APML–SSA

� j = −1 + �x
c�t (tp + tm + tptm(tpp + tmm)) + tptmmtpptm

1 + �x
c�t (tp + tm + tptm(tpp + tmm)) − tptmmtpptm

, (201)

�p, j = 2tm(1 + tmmtp)

1 + �x
c�t (tp + tm + tptm(tpp + tmm)) − tptmmtpptm

, (202)

�m, j = 2tp(1 + tpptm)

1 + �x
c�t (tp + tm + tptm(tpp + tmm)) − tptmmtpptm

, (203)

with �̄j = p�j and

tp = e−(�j + �̄j )�x/2, (204)

tmm = e−(�j − �̄j )�x/2, (205)

tpp = e−(�j+1/2 + �̄j+1/2)�x/2 , (206)

tm = e−(�j+1/2 − �̄j+1/2)�x/2 . (207)

B.6. APML–LWA

� j = −1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p + 1)

1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p − 1)
, (208)

�p, j = 2tm(1 + tmmtp)

1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p − 1)
, (209)

�m, j = 2tp(1 + tpptm)

1 + �m + tmtpp(�p + �m) + tptmmtpptm(�p − 1)
, (210)

with �̄j = p�j , �p = �m =�x/c�t , and

tp = e−(�j + �̄j )�x/2, (211)

tmm = e−(�j − �̄j )�x/2, (212)

tpp = e−(�j+1/2 + �̄j+1/2)�x/2 , (213)

tm = e−(�j+1/2 − �̄j+1/2)�x/2 . (214)

APPENDIX C: EXPLICIT FINITE-DIFFERENCE FORMULATION

OF THE 3-D WAVE EQUATION

Using (85) and (86), the system (99) can be rewritten as(
∂

∂t
− �x

)
E ′

xx =
(

cx
∂

∂x
− �̄x

)
ux − Jx ,

(
∂

∂t
− �x

)
ux =

(
cx

∂

∂x
− �̄x

)
Ex − � ,

(
∂

∂t
− �y

)
E ′

xy =
(

cy
∂

∂y
− �̄y

)
uy,

(
∂

∂t
− �y

)
uy =

(
cy

∂

∂y
− �̄y

)
Ex , (215)

(
∂

∂t
− �z

)
E ′

xz =
(

cz
∂

∂z
− �̄z

)
uz,

(
∂

∂t
− �z

)
uz =

(
cz

∂

∂z
− �̄z

)
Ex ,

Ex = E ′
xx + E ′

xy + E ′
xz .
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The discretization using (94) and (95) together with the definitions (1–4) gives (without
loss of generality, we consider the algorithm for given time step i and location ( j, k, l),
dropping thus the indices i, j, k and l for a more concise presentation)

(
E ′1/2

xx 1/2,0,0 − E ′−1/2
xx 1/2,0,0

)/
�t = �x 1/2,0,0

(
E ′1/2

xx 1/2,0,0 + E ′−1/2
xx 1/2,0,0

)/
2 + cx 1/2,0,0

(
u0

x 1,0,0

− u0
x 0,0,0

)/
�x + �̄x 1/2,0,0

(
u0

x 1,0,0 + u0
x 0,0,0

)/
2 − J 0

x 1/2,0,0,(
E ′1/2

xy 1/2,0,0 − E ′−1/2
xy 1/2,0,0

)/
�t = �y 1/2,0,0

(
E ′1/2

xy 1/2,0,0 + E ′−1/2
xy 1/2,0,0

)/
2 + cy 1/2,0,0

(
u0

y 1/2,1/2,0

− u0
y 1/2,−1/2,0

)/
�y�̄y 1/2,0,0

(
u0

y 1/2,1/2,0 + u0
y 1/2,−1/2,0

)/
2,(

E ′1/2
xz 1/2,0,0 − E ′−1/2

xz 1/2,0,0

)/
�t = �z 1/2,0,0

(
E ′1/2

xz 1/2,0,0 + E ′−1/2
xz 1/2,0,0

)/
2 + cz 1/2,0,0

(
u0

z 1/2,0,1/2

− u0
z 1/2,0,−1/2

)/
�z + �̄z 1/2,0,0

(
u0

z 1/2,0,1/2 + u0
z 1/2,0,−1/2

)/
2,(

u1
x 0,0,0 − u0

x 0,0,0

)/
�t = �x 0,0,0

(
u1

x 0,0,0 + u0
x 0,0,0

)/
2 + cx 0,0,0

(
E1/2

x 1/2,0,0

−E1/2
x −1/2,0,0

)
�x + �̄x 0,0,0

(
E1/2

x 1/2,0,0 + E1/2
x −1/2,0,0

)/
2−�

1/2
0,0,0,(

u1
y 1/2,1/2,0 −u0

y 1/2,1/2,0

)/
�t = �y 1/2,1/2,0

(
u1

y 1/2,1/2,0 +u0
y 1/2,1/2,0

)/
2+cy 1/2,1/2,0

(
E1/2

x 1/2,1,0

− E1/2
x 1/2,0,0

)/
�y + �̄y 1/2,1/2,0

(
E1/2

x 1/2,1,0 + E1/2
x 1/2,0,0

)/
2,(

u1
z 1/2,0,1/2 − u0

z 1/2,0,1/2

)/
�t = �z 1/2,0,1/2

(
u1

z 1/2,0,1/2 + u0
z 1/2,0,1/2

)/
2 + cz 1/2,0,1/2

(
E1/2

x 1/2,0,1

− E1/2
x 1/2,0,0

)/
�z + �̄z 1/2,0,1/2

(
E1/2

x 1/2,0,1 + E1/2
x 1/2,0,0

)/
2,

with

E1/2
x 1/2,0,0 = E ′1/2

xx 1/2,0,0 + E ′1/2
xy 1/2,0,0 + E ′1/2

xx 1/2,0,0.

This gives the computer-programmable form

E ′1/2
xx 1/2,0,0 = �x 1/2,0,0 E ′−1/2

xx 1/2,0,0 + �px 1/2,0,0u0
x 1,0,0 − �mx 1/2,0,0u0

x 0,0,0 − �x 1/2,0,0 J 0
x 1/2,0,0,

E ′1/2
xy 1/2,0,0 = �y 1/2,0,0 E ′−1/2

xy 1/2,0,0 + �py 1/2,0,0u0
y 1/2,1/2,0 − �my 1/2,0,0u0

y 1/2,−1/2,0,

E ′1/2
xz 1/2,0,0 = �z 1/2,0,0 E ′−1/2

xz 1/2,0,0 + �pz 1/2,0,0u0
z 1/2,0,1/2 − �mz 1/2,0,0u0

z 1/2,0,−1/2,

u1
x 0,0,0 = �x 0,0,0u0

x 0,0,0 + �px 0,0,0 E1/2
x 1/2,0,0 − �mx 0,0,0 E1/2

x −1/2,0,0 − �x 0,0,0�
1/2
0,0,0,

u1
y 1/2,1/2,0 = �y 1/2,1/2,0u0

y 1/2,1/2,0 + �py 1/2,1/2,0 E1/2
x 1/2,1,0 − �my 1/2,1/2,0 E1/2

x 1/2,0,0,

u1
z 1/2,0,1/2 = �z 1/2,0,1/2u0

z 1/2,0,1/2 + �pz 1/2,0,1/2 E1/2
x 1/2,0,1 − �mz 1/2,0,1/2 E1/2

x 1/2,0,0,

where, for a given location ( j, k, l) and an axis u = {x, y, or z}, the equivalence between
�u j,k,l , �pu j,k,l , �mu j,k,l , �u j,k,l , and �u j,k,l , cu j,k,l , and �̄u j,k,l is given by

�u j,k,l = (1 − �u j,k,l�t/2)/(1 + �u j,k,l�t/2),

�pu j,k,l = �t(1/�u + �̄u j,k,l/2)/(1 + �u j,k,l�t/2),

�mu j,k,l = �t(1/�u − �̄u j,k,l/2)/(1 + �u j,k,l�t/2),

�u j,k,l = �t/(1 + �u j,k,l�t/2) = 0.5�t/(1 +�u j,k,l).



ASYMMETRIC PERFECTLY MATCHED LAYERS 399

The values of �u j,k,l , �pu j,k,l , �mu j,k,l are obtained from one of the formulas summarized
in Appendix B.
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